known as the characteristic equation. If M is nonsingular, then the there are $2 n$ eigenvalues and eigenvectors. The problem of finding the eigenvalues and eigenvectors of $P(\lambda)$ is known as the quadratic eigenvalue problem (QEP).

The underlying equation, which is often used in dynamic analysis of mechanical systems, is a homogenous linear second-order differential equation:

$$
\begin{equation*}
M \ddot{q}(t)+C \dot{q}(t)+K q(t)=0 . \overline{\bar{幺}} \tag{2.1.3}
\end{equation*}
$$

Mechanical structures are usually modeled by the equations, which are typically obtained by finite element discretization of distributed parameter systems.

Using separation of variables and assuming a solution of the form $q(t)=\phi_{0} e^{\lambda_{0} t}$, the equation (2.1.3) leads us to the eigenvalue-eigenvector problem:

$$
P\left(\lambda_{0}\right) \phi_{0}=0
$$

In the case, when all of the eigenvalues of the quadratic pencil are distinct, the general solution to the above equation (2.1.3) is:

$$
q(t)=\sum_{k=1}^{2 n} a_{i} \phi_{i} e^{\lambda_{i} t}
$$

More generally, when λ_{0} is an eigenvalues of algebraic multiplicity p, function

$$
q(t)=\left(\frac{t^{k}}{k!} \phi_{0}+\ldots+\frac{t}{1!} \phi_{k-1}+\phi_{p}\right) e^{\lambda_{0} t}
$$

is a solution of the differential equation if the set of vectors $\phi_{0}, \ldots, \phi_{p}$, with $\phi_{0} \neq 0$, satisfies the relation

$$
\sum_{p=0}^{j} \frac{1}{p!} L^{(p)}\left(\lambda_{0}\right) \phi_{j-p}=0, j=1, \ldots, p
$$

Here $L^{(p)}$ is the p th derivative of the polynomial. Such set of vectors $\left\{\phi_{1}, \ldots, \phi_{p}\right\}$ is called a Jordan chain of length $p+1$ associated with eigenvalue λ_{0}. The Jordan

